
ICISC 2003

Software Watermarking Through Register

Allocation: Implementation, Analysis, and

Attacks

Ginger Myles

Christian Collberg

{mylesg,collberg}@cs.arizona.edu

University of Arizona

Department of Computer Science

– p. 1 ICISC 2003

What is Software Watermarking?

Technique used to aid in the prevention of software piracy.

embed(P, w, key) → P ′

recognize(P ′, key) → w

Watermark: w uniquely identifies the owner of P .

Fingerprint: w uniquely identifies the purchaser of P .

Watermarked
Program

Original
Program

Embed
Watermark

Extract
Watermark

WW K
K

P P
′

– p. 2

ICISC 2003

What is Software Watermarking?

Static: the watermark is stored directly in the data or code
sections of a native executable or class file. Make use of the
features of an application that are available at compile-time.

Dynamic: the watermark is stored in the run-time structures
of the program.

– p. 3 ICISC 2003

What is Software Watermarking?

Blind: the recognizer is given the watermarked program and
the watermark key as input.

Informed: the recognizer is given the watermarked program
and the watermark key as input and it also has access to the
unwatermarked program.

– p. 4

ICISC 2003

Why use Software Watermarking?

Discourages illegal copying and redistribution.

A copyright notice can be used to provide proof of ownership.

A fingerprint can be used to trace the source of the illegal
redistribution.

Does not prevent illegal copying and redistribution.

– p. 5 ICISC 2003

How can we watermark software?

Insert new (non-functional or nonexcuted) code

Reorder code where it does not change the functionality

Manipulate instruction frequencies

� �

switch (E) {

case 1 : { · · ·}

case 5 : { · · ·}

case 9 : { · · ·}

}
� �

⇒

� �

switch (E) {

case 5 : { · · ·}

case 1 : { · · ·}

case 9 : { · · ·}

}
� �

– p. 6

ICISC 2003

Interference Graph

Models the relationship between the variables in the procedure.

Each variable in the procedure is represented by a vertex.

If two variables have overlapping live ranges then the vertices
are joined by an edge.

Color the graph such that

minimize the number of registers required

two live variables do not share a register

– p. 7 ICISC 2003

Interference Graph Example

� �

v1 := 2 * 2

v2 := 2 * 3

v3 := 2 * v2

v4 := v1 + v2

v5 := 3 * v3
� �

 5

 1

 2

 3 4

– p. 8

ICISC 2003

Interference Graph Example

� �

v1 := 2 * 2

v2 := 2 * 3

v3 := 2 * v2

v4 := v1 + v2

v5 := 3 * v3
� �

 5

 1

 4 3

 2

– p. 9 ICISC 2003

Interference Graph Example

� �

v1 := 2 * 2

v2 := 2 * 3

v3 := 2 * v2

v4 := v1 + v2

v5 := 3 * v3
� �

 5

 4 3

 2

 1

– p. 10

ICISC 2003

Interference Graph Example

� �

v1 := 2 * 2

v2 := 2 * 3

v3 := 2 * v2

v4 := v1 + v2

v5 := 3 * v3
� �

 5

 4 3

 2

 1

� �

mult R1, 2, 2

mult R2, 2, 3

mult R3, 2, R2

add R1, R1, R2

mult R1, 3, R3
� �

– p. 11 ICISC 2003

QP Algorithm

Originally proposed by G. Qu and M. Potkonjak.

Constraint-based software watermarking algorithm.

Embeds a watermark in the register allocation of the program
through a technique called edge-adding.

Use the interference graph and the graph coloring problem
to embed a watermark in the register allocation.

– p. 12

ICISC 2003

QP Algorithm

Edges are added between chosen vertices in a graph based on
the value of the message.

Since the vertices are now connected, they cannot be assigned
to the same register.

5

1

2

4 3

5

1

2

4 3

– p. 13 ICISC 2003

QPS Algorithm

Improvement on the QP Algorithm

In order to use the algorithm for software watermarking,
stricter embedding criteria are required.

Unpredicability of the coloring of vertices using the original
algorithm.

One vertex could be used multiple times.

– p. 14

ICISC 2003

QPS Algorithm

Key idea:

Select triples of vertices such that they are isolated units
that will not effect other vertices in the graph.

Colored Triple: Given an n-colorable graph G = (V, E), a

set of three vertices {v1, v2, v3} is considered a colored
triple if
1. v1, v2, v3 ∈ V ,
2. (v1, v2), (v1, v3), (v2, v3) 6∈ E, and
3. v1, v2, v3 are all colored the same color.

2

4 3

1

– p. 15 ICISC 2003

QPS Embedding Algorithm

for each vertex vi ∈ V which is not already in a triple

if possible find the nearest two vertices vi1
and vi2

such that

vi1
and vi2

are the same color as vi,

and vi1
and vi2

are not already in triple.

if mi = 0

add edge (vi, vi1
)

else

add edge (vi, vi2
)

end for

5

1

2

4 3

5

1

2

4 3

5

1

2

4 3

– p. 16

ICISC 2003

QPS Recoginition Algorithm

for each vertex vi ∈ V which is not already in a triple

if possible find the nearest two

vertices vi1
and vi2

such that

vi1
and vi2

are the same color as vi,

and vi1
and vi2

are not already in triple.

if v′
i
and v′

i1
are different colors

found a 0

add edge (vi, vi1
)

else

found a 1

add edge (vi, vi2
)

end for

5

1

2

4 3

5

1

2

4 3

5

1

2

4 3

– p. 17 ICISC 2003

QPS Example

(e) Watermarked Bytecode

50 : iconst_1

53 : iload_2
54 : iconst_1
55 : isub
56 : istore_2
57 : goto −> 12

62 : ireturn

21 : iconst_1

42 : baload
43 : if_icmpeq −> 50
46 : iconst_0
47 : goto −> 51

34 : ifne −> 60

38 : iload_2
37 : aload_0

39 : baload
40 : aload_1
41 : iload_2

22 : ifne −> 33

30 : goto −> 34
33 : iconst_1

13 : iconst_0
14 : if_icmplt −> 21
17 : iconst_0
18 : goto −> 22

METHOD: fast_memcmp:([B[BI)Z
0 : iconst_0
1 : istore 3
3 : iconst_0
4 : istore_3
5 : iconst_1

8 : iload_2
9 : iconst_1
10 : isub
11 : istore_2
12 : iload_2

6 : istore 4

25 : iload 4

60 : iload 4

51 : istore 4

27 : invokestatic

v1

v2

v3

v4v5

v6

v7

(b) Original Interference Graph

v1

v2

v3

v4v5

v6

v7

(c) Watermarked Interference Graph

Watermark
Embed

v7 2
v6 4
v5 3
v4 3
v3 2
v2 1
v1 0

variable register number
(d) Register Assignment Table

(a) Original Bytecode

50 : iconst_1
51 : istore 3
53 : iload_2
54 : iconst_1
55 : isub
56 : istore_2
57 : goto −> 12
60 : iload 3
62 : ireturn

21 : iconst_1

42 : baload
43 : if_icmpeq −> 50
46 : iconst_0
47 : goto −> 51

34 : ifne −> 60

38 : iload_2
37 : aload_0

39 : baload
40 : aload_1
41 : iload_2

22 : ifne −> 33
25 : iload 3

30 : goto −> 34
33 : iconst_1

13 : iconst_0
14 : if_icmplt −> 21
17 : iconst_0
18 : goto −> 22

METHOD: fast_memcmp:([B[BI)Z
0 : iconst_0
1 : istore 3
3 : iconst_0
4 : istore_3
5 : iconst_1
6 : istore 3
8 : iload_2
9 : iconst_1
10 : isub
11 : istore_2
12 : iload_2

27 : invokestatic

– p. 18

ICISC 2003

Implementation

Implemented in Java using the BCEL bytecode editor.

Incorporated into the SandMark framework.

Can be applied to an entire application or a single class file.

Watermark is spread across all classes and is embedded as
many times as possible.

Message is converted to a binary representation using the
ASCII value of the characters. An 8-bit length field is added
to the beginning that is used in the recognition phase.

– p. 19 ICISC 2003

QPS Watermarking Algorithm Evaluation

Performed a variety of empirical tests to evaluate the
algorithm’s overall effectiveness.

Implementation within SandMark facilitated the study of
manual attacks and the application of obfuscations.

The evaluation examined five software watermarking
properties.

– p. 20

ICISC 2003

Watermark Evaluation Properties

Credibility: The watermark should be readily detectable for
proof of authorship while minimizing the probability of
coincidence.

Data-rate: Maximize the length of message that can be
embedded.

Perceptual Invisibility (Stealth): A watermark should exhibit

the same properties as the code around it so as to make
detection difficult.

Part Protection: A good watermark should be distributed
throughout the software in order to protect all parts of it.

– p. 21 ICISC 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

– p. 22

ICISC 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Subtractive Attack: The adversary attempts to remove all
or part of the watermark.

Alice
Bob

W K

P
′′P

′P

K

– p. 23 ICISC 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Additive Attack: The adversary adds a new watermark.

Alice Bob

W W1

W1

W
W

Additive
Attack

P
′

P

K

K1

KP
′′

– p. 24

ICISC 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Distortive Attack: The attacker applies a series of
semantics-preserving transformations to render the
watermark useless.

Alice
Bob

W W’ W’

Distortive
Attack

K

P
K

P
′ P

′′

– p. 25 ICISC 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Collusive Attack: The adversary compares two differently
fingerprinted copies of the software to identify the location.

Alice Bob

F1

F2

Collusive
AttackP1

PP

K1

K2

P2

– p. 26

ICISC 2003

Results

The original QP algorithm has a very low recovery rate.

Accurate recovery is a necessity so the QPS algorithm was
developed.

The QPS algorithm has a very low data-rate.

The QPS algorithm is susceptible to a variety of simple
attacks.

The QPS algorithm is quite stealthy.

The QPS algorithm is extremely credible.

– p. 27 ICISC 2003

A shameless plug to conclude

Sandmark contains an implementation of the QPS algorithm
as well as several other watermarking algorithms

http://www.cs.arizona.edu/sandmark

– p. 28

	What is Software Watermarking?
	What is Software Watermarking?
	What is Software Watermarking?
	Why use Software Watermarking?
	How can we watermark software?
	Interference Graph
	Interference Graph Example
	Interference Graph Example
	Interference Graph Example
	Interference Graph Example
	QP Algorithm
	QP Algorithm
	QPS Algorithm
	QPS Algorithm
	QPS Embedding Algorithm
	QPS Recoginition Algorithm
	QPS Example
	Implementation
	QPS Watermarking Algorithm Evaluation
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Results
	A shameless plug to conclude

