
The Use of Software-Based Integrity
Checks in Software Tamper

Resistance Techniques
Ginger Myles

gmyles@us.ibm.com

IBM Almaden Research Center

[1]

Talk Overview

Integrity check overview

Use of integrity checks in tamper resistance techniques

Attack on integrity checks

[2]

Attack Model

Software executing on a potentially hostile host.

Adversary has full control over the software’s execution.

Adversary can use any program analysis tools to detect
and circumvent the checks.

Executable

Benign

The Hackers Toolbox

⇐

⇐
⇐⇒

[3]

Software Tamper Resistance

Detect that the program has been altered.

Cause the program to fail when tampering has been
detected.

[4]

Integrity Check Overview

What are they?
A mechanism used to identify the integrity of the
program and/or the environment in which it is
executing.

Checker

Executable

⇒⇒

[5]

Integrity Check Overview

What are they?
Static - integrity is checked only once during start-up
Dynamic - integrity is checked repeatedly as the
program executes

Checker

Executable

⇒⇒

[6]

Integrity Check Overview

How are they used?
Generally used as part of a larger tamper resistance
scheme.

Assertion Check Based (BAD!) Use Based (Better)

ic = performCheck(); ic = performCheck();

if(ic != PREDICTED VALUE) {fail;} decryptSegment(ic, k);

[7]

Integrity Check Overview

Why are they used?
Program integrity verification

Prevent license check removal
Protect a watermark from damage or removal

Executable

Code
Obfuscator

Executable

Watermark

Extractor ⇒?⇒
⇓

⇒ ⇒

[8]

Integrity Check Overview

Why are they used?
Environmental integrity verification

Detect the use of debuggers or emulators
· Protect the keys embedded in DRM systems
· Sensitive code that it is only decrypted for

execution

Disabled
Executable

Debugger

Executable
DRM Protected

Debugger

⇒
kk

⇒ ⇒

[9]

Program Integrity Verification

Code Checksum
Probably the oldest method
Straight forward implementation
Quite efficient

Execution Executable

ic

ic

[10]

Program Integrity Verification

Code Checksum – The Negatives
Reading the code segment is generally atypical.

Executable
Execution

ic

ic

ic

ic

[11]

Program Integrity Verification

Code Checksum – The Negatives
Hackers pinpoint checks through breakpoints or
code inspection.
Only verifies static properties.

May not detect temporary instruction patches or
other run-time attacks.

[12]

Program Integrity Verification

Oblivious Hashing [Chen et al., 2002]
Dynamic - based on execution trace.
Monitor both instructions and memory references.
Compute hash value from execution trace.

Trace

Sequence
Instruction

Memory

In

I1

I2

.

.

.

M1

Mn

M2

.

.

.

[13]

Program Integrity Verification

Oblivious Hashing
Hashing locations must be extensive and spread
throughout program.
To protect a function all functions on the
calling-hierarchy must be protected.
Trace should include memory references made by
each instruction and the instruction itself.

Sequence
Instruction

Memory

h1

In

I1 M1

Mn

M2I2

.

.

.

.

.

.

hn

h2

[14]

Environment Integrity Verification

Detection of debuggers and other similar simulation
tools

Use a checksum to detect a breakpoint.
Measure elapsed time to execute a sequence of
instructions.
Look for tool specific hooks.

[15]

Environment Integrity Verification

The Negatives
Level of checksum granularity will effect success of
detecting a breakpoint.
Detection is tool specific.

[16]

Real Uses of Integrity Checks

Check and Guard System [Chang and Atallah, 2001]
Network of guards.
Each guard responsible for performing some type of
integrity check.
Protect each other and the program in an
interlocking fashion.
Some guards can repair altered code.

C

[17]

Real Uses of Integrity Checks

Check and Guard System
Repairing guard inserted prior to code.
Checksumming guard inserted at a point when code
will be present in program image.
Strongly connected guard graph increases the
efforts required by the attacker.

C

[18]

Real Uses of Integrity Checks

Testers and Correctors [Horne et al., 2002]
Collection of testers which each hash a single
contiguous section of code.
Testers are sprinkled throughout code and triggered
by normal program execution.

Execution
Executable

tester

tester

tester

tester

tester
tester

tester

[19]

Real Uses of Integrity Checks

Testers and Correctors [Horne et al., 2002]
Compares hash value with correct value.
Incorrect value triggers response mechanism via
simple function call.

[20]

Real Uses of Integrity Checks

Testers and Correctors
Each hash interval contains a corrector.
Corrector set to a value such that the interval hashes
to a fixed value.

Executable
Execution

tester

tester

tester

tester

tester

tester

tester

[21]

Real Uses of Integrity Checks

Branch-Based Tamper Resistance [Myles, Jin, 2005]
Based on Branch Function obfuscation [Linn and
Debray, 2003]:

Designed to disrupt static disassembly.
Exploits assumption that a function call returns to
the instruction immediately following the call
instruction.
Execution is rerouted through the branch function.
The correct target is identified based on the call
location.
· T [h(ji)] = ti − ji

Return address on the stack is overwritten.

[22]

Real Uses of Integrity Checks

Branch-Based Tamper Resistance

Program Execution

Function

Branch
Function

Key Storage

Branch

...

...

...

k0

k1

k2

Key: Link proper program execution and the key
evolution.

[23]

Real Uses of Integrity Checks

Branch-Based Tamper Resistance
Integrity Check Branch Functions

1. Perform an integrity check of the program or
environment producing the value vi.

2. Generate the next key using a secure one-way
hash function, the previous key, and the integrity
check value.

ki+1 = SHA1(vi, ki)
3. Use ki+1 to identify the instruction where execution

will resume.

[24]

Real Uses of Integrity Checks

Branch-Based Tamper Resistance
Integrity Check Branch Function Construction

Modified Application

key generation

integrity check

Integrity Check Branch Function

ICBF

Original Application

di+1 = T [h(ki+1)]

retnew = retold +di+1

f1

f2

f3

f1

f2

f3

+ ⇒

(vi, ki, AM)

vi
ki

ki+1ki+1

[25]

Real Uses of Integrity Checks

Branch-Based Tamper Resistance
Branch Instruction Replacement

ICBF_1()

sub
mov

mov
add
mov
jmp

add
pop
ret

push
mov
cmp
call

mov
add
mov
jmp

mov
sub
mov

mov
push
push
call

add
pop
ret

ICBF_1

ICBF_1

0

4

3

21

push
mov
cmp
jge

mov
push
push
call

1

2

3

4

0

Modified Application

ICBF_2

ICBF_2

ICBF_1()

Protected Application

ICBF_2()

mov

f1

f2

f3

f1

d2 → k2

d1 → k1

⇒ ⇒

f2
.
.
.

.

.

.

.

.

.

f3
.
.
.

.

.

.

[26]

Real Uses of Integrity Checks

Branch-Based Tamper Resistance
Able to construct an intertwined network of ICBF’s

C

[27]

Attacks on Integrity Checks

Circumvention of self-hashing has been accomplished
on UltraSparc, x86, PowerPC, AMD64, and ARM
architectures [van Oorschot et al., 2005].

Implicit assumption that a data read from memory
address x is the same as an instruction fetch from x.
I(x) 6= D(x) will verify code that is never executed
and the executed is never checked.
Manipulate virtual to physical address mappings
such that each virtual address refers to two different
physical addresses

code references and data references
Done through segmentation and translation
lookaside buffers.

[28]

Wrap-up

We looked at a common type of integrity checking
how it is used in real tamper resistance techniques
and
how it can be circumvented.

[29]

Wrap-up

Questions I’m considering:
Is there hope for strictly software-based techniques?
Is there a way we can determine the level of
protection provided by the different types of integrity
checks?

[30]

Wrap-up

Questions I’m considering:
Is there hope for strictly software-based techniques?
Is there a way we can determine the level of
protection provided by the different types of integrity
checks?

Begin building an incremental strength evaluation
scheme for software tamper resistance
techniques.

[30]

Wrap-up

Questions I’m considering:
Is there hope for strictly software-based techniques?
Is there a way we can determine the level of
protection provided by the different types of integrity
checks?

Begin building an incremental strength evaluation
scheme for software tamper resistance
techniques.
With the Check and Guard system or the
Branch-Based technique strength can be
customized or checks can be replaced once
discovered they are breakable.

[30]

References

Protecting Software Code by Guards, Chang and Atallah, Proc. of 1st
ACM Workshop on Security and Privacy in Digital Rights
Management, 2001.

Oblivious Hashing: A Stealthy Software Integrity Verification Primitive,
Chen, Venkatesan, Cary, Pang, Sinha, and Jakubowski, Proc. of 5th
International Workshop on Information Hiding, 2002.

Towards Better Software Tamper Resistance, Jin and Myles, Proc. of
Information Security: 8th International Conference, 2005.

Self-Validating Branch-Based Software Watermarking, Myles and Jin,
Proc. of 7th International Workshop on Information Hiding, 2005.

Hardware-Assisted Circumvention of Self-Hashing Software Tamper
Resistance, van Oorschot, Somayaji, and Wurster, IEEE Transactions on
Dependeble and Secure Computing, 2005.

[31]

	Talk Overview
	Attack Model
	Software Tamper Resistance
	Integrity Check Overview
	Integrity Check Overview
	Integrity Check Overview
	Integrity Check Overview
	Integrity Check Overview
	Program Integrity Verification
	Program Integrity Verification
	Program Integrity Verification
	Program Integrity Verification
	Program Integrity Verification
	Environment Integrity Verification
	Environment Integrity Verification
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Real Uses of Integrity Checks
	Attacks on Integrity Checks
	Wrap-up
	Wrap-up
	Wrap-up
	Wrap-up

	References

