
Software Watermarking via Opaque
Predicates: Implementation, Analysis,

and Attacks

Ginger Myles and Christian Collberg
Department of Computer Science,

University of Arizona,
Tucson, AZ, 85721, USA

{mylesg,collberg}@cs.arizona.edu

Abstract

Within the software industry software piracy is a great concern. In this article
we address this issue through a prevention technique called software water-
marking. Depending on how a software watermark is applied it can be used to
discourage piracy; as proof of authorship or purchase; or to track the source
of the illegal redistribution. In particular we analyze an algorithm originally
proposed by Geneviève Arboit in A Method for Watermarking Java Programs
via Opaque Predicates. This watermarking technique embeds the watermark
by adding opaque predicates to the application. We have found that the Arboit
technique does withstand some forms of attack and has a respectable data-rate.
However, it is susceptible to a variety of distortive attacks. One unanswered
question in the area of software watermarking is whether dynamic algorithms
are inherently more resilient to attacks than static algorithms. We have imple-
mented and empirically evaluated both static and dynamic versions within the
SANDMARK framework.

1 Introduction

Software piracy and copyright infringement have been issues of concern for
some time. The ease with which people can access and use the Internet has
lead to the widespread dissemination of illegal software. To compound the
problem, software is being legally distributed in architectural neutral formats,
such as Java bytecode and Microsoft’s Intermediate Language (MSIL). These

formats closely resemble source code and can be easily decompiled and ma-
nipulated. Not only do these formats make it easy for software pirates to
bypass license checks but they also allow unscrupulous programmers to steal
algorithmic secrets. This may allow them to decrease their own production
time to get an edge on the competition.

Of course, there are legal ramifications associated with software piracy,
such as a $150,000 fine for each program copied [1]. However, these fines
are often targeted at an unsuspecting end user and not at the person actually
responsible for the piracy. When a person unknowingly purchases and uses
an illegal piece of software it is often difficult to trace this software back
to the guilty party. In addition, it is also hard to detect and prove that an
unscrupulous programmer has taken advantage of a trade secret.

Organizations such as the BSA [1] perform audits to verify that corpora-
tions are not using illegal software. Unfortunately, auditing does not iden-
tify an unknown software pirate or unscrupulous programmer. Software wa-
termarking is one technique currently being investigated to tackle this issue.
Software watermarking embeds a unique identifier in a program. The unique
identifier can be used to identify the author or the legal purchaser of the pro-
gram. An authorship mark can be used against the unscrupulous programmer
and a purchase mark can be used to track the source of the illegal redistribu-
tion [14].

In this paper we present an implementation and empirical evaluation of a
software watermarking technique originally proposed by Geneviève Arboit at
ICECR-5 [5]. To the best of our knowledge this technique has never been im-
plemented nor empirically evaluated. The general idea behind the algorithm is
to embed the watermark by appending opaque predicates to branching points
selected throughout the application. The implementations have been incor-
porated into the SANDMARK framework [2]. This allows us to evaluate the
resilience of the algorithms to manual and automated attacks. In particular, we
consider attacks by tools such as static statistics and code obfuscations. We
also present a novel extension of this idea which uses a dynamic recognition
technique.

The remainder of the paper is structured as follows. We begin with a dis-
cussion of software watermarking and previously proposed software water-
marking algorithms. In Section 3 we discuss opaque predicates, one of the
most important aspects of the technique proposed by Arboit. We present a
general description of the technique as it was proposed in Section 4. This is

followed, in Section 5, by the details of our implementation and the dynamic
technique. Section 6 provides a detailed empirical evaluation of the algo-
rithms and an evaluation of static versus dynamic versions of the algorithm.
Finally, in Section 7 we summarize our findings.

2 Software Watermarking

Software watermarking is just one of many techniques that is currently being
studied to prevent or discourage software piracy and copyright infringement.
The idea is similar to media watermarking where a unique identifier is embed-
ded in image, audio, or video data through the introduction of errors not de-
tectable by human perception. Due to the nature of software it is not possible
to strictly apply the ideas found in media watermarking. Instead embedding
an identifier in a piece of software must be done in such a way that the original
functionality is maintained.

Definition 1 (Software Watermarking System) Given a program � , a wa-
termark � , and a key � , a software watermarking system consists of two func-
tions: �� � �� � � � � � � 	
 ��� and
 ��� �� �� � � ��� � � 	
 � .

There are two general categories of watermarking algorithms, static and
dynamic. A dynamic algorithm relies on information gathered from the ex-
ecution of the application to embed and recognize the watermark. Static al-
gorithms only examine the static code and data of the application. A variety
of techniques have been proposed for software watermarking but there are
few publications describing the implementation and evaluation of these algo-
rithms.

There are far more static watermarking algorithms than dynamic due to the
multitude of locations where information can be hidden in an executable. For
example, in a Java classfile a static watermark can be embedded in the con-
stant pool table, method table, etc. The first dynamic watermark algorithm,
CT, was proposed by Collberg et al. [7]. This technique builds a graph struc-
ture at runtime which is used to embed the watermark.

Davidson and Myhrvold [9] proposed a static watermarking algorithm
which embeds the watermark by reordering the basic blocks of a control flow
graph. Venkatesan et al. [21] build on this idea in an algorithm which embeds
the watermark by extending a method’s control flow graph through the inser-
tion of a subgraph. Monden et al. [11, 12] propose a technique which embeds

the watermark in a dummy method through a specially constructed instruction
sequence. Stern et al. [19] also consider instruction sequences for embedding
the watermark. Their technique modifies instruction frequencies to represent
the watermark. Qu and Potkonjak [16] make use of the graph coloring prob-
lem to embed a watermark in the register allocation of an application.

Of these proposed algorithms very little has been published on their imple-
mentation and evaluation. There are a few existing implementations of the
CT algorithm, such as the one within the SANDMARK framework and that by
Palsberg et al. [15]. A recent dissertation by Hachez [10] provides an analysis
of the Stern algorithm, as does Sahoo [17]. The Qu and Potkonjak technique
was evaluated by Myles [13].

SANDMARK [6] is a research tool for studying software protection tech-
niques and in particular software watermarking, code obfuscation, and
tamper-proofing of Java bytecode. One of the goals of the SANDMARK

project is to implement and evaluate all known software watermarking algo-
rithms. The system includes a variety of tools that permit the study of water-
marking algorithms with respect to such properties as resiliency and stealth.
Through the implementation and evaluation of known software watermarking
algorithms we will be able to gain an understanding of what makes a software
watermark strong.

3 Opaque Predicates

Opaque predicates were first presented Collberg et al. [8] as a technique to
aid in code obfuscation and later incorporated in a software watermarking
technique proposed by Monden et al. [11, 12]. Informally, opaque predicates
are inserted to make it difficult for an adversary to analyze the control-flow of
the application. This makes it more difficult to identify that certain portions
of the application are superfluous. For example, the Monden algorithm uses
opaque predicates to disguise the fact that a dummy method is never invoked.

Definition 2 (Opaque Predicate) A predicate � is opaque at a program
point � , if at point � the outcome of � is known at embedding time. If �

always evaluates to True we write ��� � , for False we write ��� � , and if �

sometimes evaluates to True and sometimes to False we write ��� � [8].

Definition 3 (Opaque Method) A boolean method � is opaque at an invo-
cation point � , if at point � the return value of � is known at embedding time.

�� � � � � � ��� � 	
�� � ��� � �
 ���� �� ��� � �
 �� �� � 	 	�� � � � � � ��� � � � �� �� � 	 	 �� �
 	�� � � �
 �� � � 	�� � � � 	
 �� � � � � ��� � � 	 �
 ��� � � � ��� � � � �� � �� � 	 	 �� � 	 	

Table 1: Number theoretically true opaque predicates used in the implemen-
tation of the Arboit Algorithms.

If � always returns the value of True we write � � � , for False we write

� � � , and if � sometimes returns True and sometimes False we write � � � .

The key challenge to using opaque predicates or opaque methods is to de-
sign them in such a way that they are resilient to various forms of analysis.
If an adversary can easily decipher the value of an opaque predicate it pro-
vides very little protection for the software. A variety of techniques such as
using number theoretic results, pointer aliases, and concurrency have been
suggested for the construction of opaque predicates [8]. In addition to the
number theoretic results, Arboit also suggests a technique for constructing a
family of opaque predicates through the use of quadratic residues. Our cur-
rent implementation of the Arboit Algorithms uses number theoretically true
opaque predicates and opaque methods. The nine we have implemented thus
far can be seen in Table 1. An important aspect of the Arboit algorithms is
that the opaque predicate library must remain secret. If an adversary knows
even a few of the opaque predicates used in the embedding he may be able to
identify them in the application and then remove them.

None of the nine opaque predicates used in the current implementation are
considered cryptographically secure or even resilient to analysis. While this
does weaken the implementation it does not invalidate the analysis in Sec-
tion 6. The disadvantage of using these opaque predicates is that the algorithm
is not as stealthy and is susceptible to manual attacks that will be elaborated
on. As more sophisticated opaque predicates become available within the

SANDMARK framework they will be used to embed the watermark in place
of the simple ones in Table 1.

4 Arboit Algorithm

Arboit proposed two watermarking techniques both based on opaque predi-
cates [5]. The first algorithm (henceforth GA1) is the basic insertion algorithm
which directly uses the opaque predicates. To embed a watermark, � is split
into � pieces � � �� � � � � �� and � branching points, ! � �� � � � ! �� , throughout the
application are randomly selected. At each branching point ! " , either # �� $ % ,&' �� $ % , or & �� $ % is appended to the predicate at that location. The bits of the
watermark are embedded through the opaque predicate that has been chosen.
Within the opaque predicate the bits can be encoded either as constants or by
assigning a rank to each of the opaque predicates. To recognize the water-
mark the application is scanned, extracting all identifiable opaque predicates.
The bits of the watermark are then decoded from the opaque predicate. As an
example, suppose our watermark is encoded in the opaque predicate� � � � .
A watermark could be embedded as follows:

class C (

void m1(int a, int b) (

...
if(a <= b) (...)

else (...)

...))

*+

class C (

void m1(int a, int b) (

...
int c = 1;
if((a <= b) &&

(c*c ,- 0)) (...)

else (...)

...))

The second Arboit algorithm (henceforth GA2) is similar to GA1 except
opaque methods are used to embed the watermark. Again � branching points! � �� � � � ! �� are randomly selected throughout the application. For each ! " ,

� � $ % or � � $ % is created and a method call is appended. The bits of the water-
mark are encoded in the opaque method through the opaque predicate that it
evaluates. To recognize the watermark the application is scanned, extracting
all opaque methods which are first identified through their signatures. Once
a possible candidate has been identified the method body is examined to find
the opaque predicate. To illustrate, suppose we use the same opaque predicate
as above. Using GA2 the application would be transformed in the following
way:

class C (
void m1(int a, int b) (

...
if(a <= b) (...)
else (...)
...))

*+

class C (

boolean m2() (

int c = 1;
return (c*c ,- 0);)

void m1(int a, int b) (

...
if((a <= b) &&

m2()) (...)

else (...)

...))

Arboit claims that GA2 is more secure. The main argument is that chang-
ing the signature of a method is difficult. However, this claim is untrue and
SANDMARK includes code obfuscations which can do just that. In Section 6
we will show that GA1 is in fact a stronger algorithm than GA2. This claim
demonstrates the importance of implementation and evaluation in the proposal
of a software watermarking algorithm.

5 Implementation Details

Our implementations of GA1 and GA2 follow from the algorithms presented
by Arboit [5]. A few modifications described below were made in an attempt
to make the algorithms more resilient to attack. In addition, we developed and
implemented dynamic versions of the algorithms.

5.1 Watermark Encoding

Arboit proposed an encoding technique in which each piece of the watermark
also includes an index value. By including the index value the watermark
pieces can be recovered in any order. Our implementation also splits the wa-
termark so that it can be recovered in any order, but the index value is not
required. Prior to embedding the watermark � it is encoded as an integer and
split into � pieces � � � � � �� � � � � � � such that � � � " � � . The technique
used to split the watermark relies on a 1-1 correspondence between a multiset

� of size � (where � � ��� "� � � � " � � �) and combinations of size �

chosen from � � � elements. Given this correspondence, the splitter enumer-
ates combinations of � chosen from the � � � elements for some fixed � . By
using this particular splitting technique the order of the pieces is unimportant.

The � pieces of the watermark are encoded in the opaque predicates in one
of two ways: through the use of constants in the predicate or by assigning a
rank to each of the opaque predicates in the library. If the opaque predicate is
a number-theoretic result, � " can be encoded:

1. in the constants contained in the predicate, or

2. by inserting new constants in the predicate.

For example, consider encoding the value 42 using the opaque predicate� �� � �� � 	 	 �� � 	 	 . This predicate has a constant value of 6 because it contains
the constants 4, 1, and 1. Thus the value 36 still needs to be encoded. This is
accomplished by multiplying both sides by 18 yielding the opaque predicate

� � 	 � 	 � � 	 	 � � � 	 � 	� � �� � 	 	 �� � 	 	 	 . This technique does not change the value
of the opaque predicate and it permits the encoding of any � �	 . To encode
an odd valued watermark select an opaque predicate that already has an odd
constant value such as
 �� �� � 	 	 .

Either technique for encoding the watermark using constants is valid, but
using only the constants that are contained in the predicate is restrictive.
For example, using the 9 opaque predicates in Table 1, only the values

� � � � � � �
 � � �
 � � � � � can be encoded. The disadvantage of inserting new con-
stants is that it makes the opaque predicate more obvious.

To encode � " using rank, each of the opaque predicates are assigned a
value starting at 0. Using SANDMARK’s library the values � � �� � � � � � can be
encoded. While this technique is simple, it does require that the opaque pred-
icate library be a fair size in order to be useful.

5.2 Watermark Embedding

The embedding process is dependent on identifying a set � of possible
branching points. This set is identified through preprocessing each method
in the application. For each � " � � an opaque predicate �� $ � or a call to an

opaque method � � $ � is appended to a selected !
 � � . In an attempt to in-
crease the strength of the algorithm we identify local variables in the method
which can be used in the opaque predicate. These variables are identified
through the use of a forward slice [20] centered around !
 .

The most significant advantage to using live variables in the opaque pred-
icate (as opposed to inserting new variables) is that it aids in disguising the

superfluous nature of the predicate. The current disadvantage to this tech-
nique is that it is not always possible to identify local variables containing in-
tegers around a selected !
 . Thus, some branching points are unusable. This
disadvantage will be alleviated as other types of opaque predicates become
available.

We were also able to add one more detail to the implementation that not
only increases the stealth but decreases the overhead. To embed a watermark
using GA2, � new methods are added to the application. This increase in
code size could be unacceptable to size sensitive applications such as those on
mobile devices. One solution is to encode � " using rank and reuse the new
methods that are added to the application. For example, without method reuse
the example class C could be transformed into the class in Figure 1. With
method reuse it is transformed into the class in Figure 2. This detail increases
the stealth by further disguising the opaque method.

Arboit discusses a technique to inhibit the adversary’s ability to destroy the
watermark using method overloading. If the adversary attempts to modify the
types of the overloaded method, overriding occurs which could lead to faulty
behavior. The current implementation does not support this technique, but
we will see in Section 6 that such a technique does not prevent watermark
distortion in those instances where GA1 outperforms GA2.

5.3 Watermark Recognition

The recognition procedure varies slightly depending on which embedding
technique is used. Watermark recovery using GA1 involves an exhaustive
search of each method. To identify sets of instructions that may be opaque
predicates the basic blocks of the control flow graph (CFG) [4] and expression
trees are constructed. Each opaque predicate will end with an if instruction
which can be found as the last instruction of a basic block. The instructions
that comprise the expression tree for that if instruction are compared to the
entries in the opaque predicate library.

If the watermark was embedded using GA2 then each method is scanned
looking for invoke instructions which call a method that has the same sig-
nature as one of the opaque methods. Currently all opaque methods have a
return type of boolean and either 1 or 2 parameters of type int. In the
case when opaque methods are not reused the recognition process could have
been simplified to checking the signature of each method. Unfortunately this

� �

c l a s s C �

vo id m1(i n t a , i n t b) �

. . .
i f (a � = b) � . . . �

e l s e � . . . �

. . .

�

vo id m2(i n t a , i n t b , i n t c) �

. . .
i f ((a+b) � = c) � . . . �

e l s e � . . . �

. . .

�
�� �

�

� �

c l a s s C �

vo id m1(i n t a , i n t b) �

. . .
i f ((a � = b) && m3 ()) � . . . �

e l s e � . . . �

. . .

�

vo id m2(i n t a , i n t b , i n t c) �

. . .
i f (((a+b) � = c) && m4 ()) � . . . �

e l s e � . . . �

. . .

�

boolean m3 () �

i n t c = 1 ;
re turn (c� c � = 0) ;

�

boolean m4 () �

i n t c = 1 ;
re turn (c� c � = 0) ;

�
�� �

Figure 1: Transformation without method reuse.

� �

c l a s s C �

vo id m1(i n t a , i n t b) �

. . .
i f (a � = b) � . . . �

e l s e � . . . �

. . .
�

vo id m2(i n t a , i n t b , i n t c) �

. . .
i f ((a+b) � = c) � . . . �

e l s e � . . . �
. . .

��� �

�

� �
c l a s s C �

vo id m1(i n t a , i n t b) �

. . .
i f ((a � = b) && m3 ()) � . . . �

e l s e � . . . �

. . .

�

vo id m2(i n t a , i n t b , i n t c) �

. . .
i f (((a+b) � = c) && m3 ()) � . . . �

e l s e � . . . �

. . .

�

boolean m3 () �

i n t c = 1 ;
re turn (c� c � = 0) ;

�
�� �

Figure 2: Transformation with method reuse.

does not yield the correct number of pieces when methods are reused. Within
each opaque method is an opaque predicate that is identified using the same
technique as in GA1.

If � " is encoded using rank, the rank of that particular opaque predicate is
identified. If constants are used, the sum of the constants is extracted from the
predicate. Once all possible � " have been identified the values are combined
to produce the watermark value.

5.4 Dynamic Arboit Algorithms

One of the yet unanswered questions in the area of software watermarking is
whether dynamic algorithms are inherently more resilient to attacks than static
algorithms. One technique to investigate this idea is to develop, implement,
and evaluate a dynamic version of an already known static algorithm. To this
end we have developed and implemented dynamic versions of GA1 and GA2
(DGA1 and DGA2 respectively).

Dynamic algorithms make use of a program’s execution state to both em-
bed and recognize a watermark. There are three different dynamic techniques:
Easter Egg Watermarks, Data Structure Watermarks, and Execution Trace
Watermarks [7]. DGA1 and DGA2 are execution trace watermarking algo-
rithms because the watermark is embedded in the trace of the program as it
is run with a specific input. This input represents the user’s secret key. For
example, suppose the application is a Tic-Tac-Toe game. The order in which
the X’s and O’s are placed on the game board becomes the secret key.

The novel aspect of DGA1 and DGA2 is that the execution trace is used
to identify the set of program branching points � instead of using randomly
selected points. The motivating factor in this design is that the execution
of the program will execute the original set of branching points when run
with the secret key no matter how distorted an attacker makes the application.
This assumption is based on the idea that most transformations that cause
the execution to skip the branch will most likely alter the functionality of the
application. Thus the dynamic nature will improve the algorithm’s ability to
withstand distortive attacks.

The set � of program branching points is required for both the embedding
and recognition phases. � is compiled by annotating the application prior to
execution. The annotation phase is fully automated and consists of adding a
special function call immediately before each if instruction. The function

1

2

3 4

5

6 7

8

9

10

11 12

13

14

F

T F

T F

T

(a) Original CFG of a
method.

1

mark()

5

6 7

8

10

11 12

13

14

mark()

9

mark()

2

3 4

FT

T F

T F

(b) CFG with annota-
tions to identify which
branches are executed.

1

2

11 12

13

14

3 4

5

6 7

8

9

10

T

F

T
F

T F

T
F

T
F

2’

10’

(c) Watermarked
CFG.

Figure 3: The watermarking of a method using DGA1 or DGA2 requires an
annotation phase which allows us to identify which branch instructions are
executed in the trace.

calls represent break points. Each time this function is called during the exe-
cution of the application it logs the location of the if instruction.

Figures 3(a) and 3(b) illustrate the transformation that occurs due to the
annotations. To illustrate the embedding procedure, suppose the execution of
the application using the secret input takes the path � 	 �
 � � � � � 	 � � 	 	 � 	 � � 	 � � .
Thus the set � consists of the if instructions in blocks 2 and 10. To water-
mark this method either GA1 or GA2 is used. In this example, the transfor-
mation that occurs due to watermarking is illustrated in Figure 3(c).

The recognition set � is again acquired through annotating the watermark
application and an execution trace. To continue with the example, the exe-
cution trace consists of the blocks � 	 �
 � � � � � 	 � � 	 �� � 	 	 � 	 � � 	 � � . What we
see is that the opaque predicate inserted in block
� is not executed. This is
because Java uses short circuit evaluation so the second predicate does not
necessarily need to be evaluated. (In the current implementation all inserted
predicates are opaquely true.) Since the trace identified block 2 we can still
recover the opaque predicate in
� . This is accomplished by examining the
fall through block of every if instruction identified in the trace since it is a
possible opaque predicate.

6 Evaluation

In order for a software watermarking technique to be effective against soft-
ware piracy and copyright infringement it should be resilient against deter-
mined attempts at discovery and removal. Very little work has been done on
evaluating the strength of software watermarking systems and thus a formal
set of properties has yet to be established. Through our study of software
watermarking algorithms using the SANDMARK system we have compiled
the following properties which we believe aid in evaluating the strength of an
algorithm [7, 10, 16]:

credibility: The recognition process should report a watermark that was em-
bedded and should not report false watermarks.

data-rate: The algorithm should have a high data-rate to permit the embed-
ding of a reasonably sized secret message.

overhead: Embedding a watermark should have little impact on the per-
formance of the application and the embedding/recognition procedure

should not be costly.

part protection: In order to protect the watermark it should be distributed
throughout the application.

resiliency: The watermark must be resilient against determined attempts at
discovery and removal. In particular it should be resilient to three impor-
tant types of attacks:

� In a subtractive attack the attacker attempts to remove the water-
mark from the disassembled or de-compiled code. Through a man-
ual or automated inspection of the code the attacker may be able
to identify and remove a watermark with low transparency without
damaging the application.

� In an additive attack the attacker adds a new watermark to the al-
ready watermarked program in an attempt to cast doubt on which
watermark was embedded first.

� In a distortive attack a series of semantics-preserving transforma-
tions are applied to the software in an attempt to render the water-
mark unrecoverable but maintain the software’s functionality and
performance.

stealth: The embedded watermark should be difficult to detect; i.e. it should
exhibit the same properties as the code or data around it.

We have evaluated both the static and dynamic versions of the Arboit al-
gorithm within SANDMARK with respect to each of the above properties.
SANDMARK includes a variety of tools that an adversary may use to discover
and/or remove a watermark. These tools include:

� An obfuscation tool that permits the evaluation of resiliency of the wa-
termark under distortive attacks.

� Additional watermarking algorithms for studying additive attacks (and
in the future for comparison purposes).

� A bytecode viewer to display the watermarked bytecode and for manu-
ally examining the stealth of the watermark.

Application total classes total methods total size (bytes)

decode 4 20 2754
fft 1 10 980
illness 16 37 764
lu 1 7 758
machineSim 12 110 6017
matrix 2 10 1054
probe 1 7 836
puzzle 3 20 5995
TTT 12 51 2358
JKeyboard 30 147 32537

Table 2: Benchmark applications used in the evaluation of GA1 and GA2.

� A statistics module that provides static statistics about an application,
such as the number of methods, number of conditional statements, etc.,
which also aids in the evaluation of stealth.

To evaluate the static GA1 and GA2 a set of 11 applications are used which
vary in both size and complexity. Two of these 11 applications are also used
for the dynamic algorithms: TTT (which is a Tic-Tac-Toe game) and JKey-
board (which allows a user to type using different alphabets). The evaluation
of the dynamic algorithms requires applications that make use of user input.
This is required so that different execution traces can be obtained. Details
of 10 of the applications can be seen in Table 2. The 11th application is
specjvm [3].

6.1 Credibility

The credibility of a watermarking algorithm is based on the accuracy of wa-
termark recovery. An algorithm can have poor credibility if it recovers a wa-
termark which was not embedded in the application (a false positive) or not
recovering a watermark that was embedded (a false negative). To evaluate the
algorithms with respect to this property we ran the recognition algorithms on
non-watermarked and obfuscated versions of the benchmark applications. No
false negatives or false positives were detected in any of the test cases.

Application Max characters Max characters Total if
using Constants using Rank instructions

decode 21 3 36
fft 7 1 16
illness 18 3 104
lu 13 2 17
machineSim 37 4 162
matrix 18 2 36
probe 8 1 17
puzzle 36 5 154
TTT 25 3 54
JKeyboard 46 4 147

Table 3: Maximum characters embedded when encoding the watermark using
constants and rank.

6.2 Data-rate

The data-rate for GA1, GA2, DGA1, and DGA2 will all be roughly the same.
This is because the embedding process is based on identifying usable if in-
structions. The only embedding detail which can alter the data-rate is whether
the watermark is encoded using constants or rank. When rank is used the
watermark must be split into more pieces since the value of each piece is
currently restricted to the values 0 through 8. Table 3 shows that by using
constants roughly 7 times as many characters can be embedded. The table
also shows the total number of if instructions found in the benchmark appli-
cations. From this it can be seen that there are still many locations for embed-
ding additional characters when the opaque predicate library is expanded.

6.3 Overhead

There are various ways that the overhead property can be applied to evaluate
a watermarking algorithm:

1. What effect does the watermark have on the size of the application?

Category Original Watermarked Slowdown
Sieve 7847 8089 3.0%
Loop 54292 54248 0%
Logic 43656 43831 0.4%
String 26173 26105 -0.3%
Float 24076 24046 -0.1%

Method 17077 15013 -13.7%
Overall 24178 23788 -1.6%

Table 4: CaffeineMark scores before and after embedding a watermark.

2. What effect does the watermark have on the performance of the applica-
tion?

3. How costly are the embedding and recognition procedures?

The increase in size depends on the number of watermark pieces and there-
fore on the size of the watermark. In addition, the encoding technique also
has an impact on the overhead. When using constants the value of each � "

can be larger which means the watermark does not need to be split into as
many pieces. For each � " roughly 80 bytes are added to the application. The
overhead can be reduced by reusing the methods when � " is encoded using
rank.

The CaffeineMark [18] benchmark shows the effect embedding a water-
mark has on the execution time of the application. Table 4 shows that embed-
ding a watermark has very little negative impact on execution time.

The embedding and recognition procedures themselves are very efficient.
Even the larger applications could be watermarked in seconds. The aspect of
the algorithm that is the most costly is the preprocessing of the methods in the
case of GA1 or GA2 and the annotation in DGA1 and DGA2. Once the set of
branching points is gathered the time required to embed � opaque predicates
is negligible.

6.4 Part Protection

The idea behind the part protection property is to split the watermark into
pieces and spread it across the application. The split watermark has a better

chance at survival since it requires that the attack target multiple locations in
the application. Both the static and dynamic algorithms incorporate part pro-
tection by splitting � into � pieces and randomly distributing those pieces. It
was previously mentioned that reusing the opaque methods provided an ad-
vantage by decreasing the overhead and increasing the stealth. Unfortunately
this technique also decreases the part protection. If the opaque method was
used to encode three of the 10 pieces of � removing the method has a higher
impact than if only one piece was destroyed.

6.5 Resilience

There are three types of attacks that an adversary could launch in an attempt
to destroy a watermark: subtractive, additive, and distortive.

6.5.1 Subtractive Attacks

One of the first things that an adversary may do in an attempt to eliminate a
watermark is decompile the application. Once the code has been decompiled
the attacker can search for aspects of the code that look suspicious such as
dummy methods. If the attacker is familiar with simple number theory prop-
erties he may realize that the watermark application contains opaque pred-
icates. If they are removed the application will still function normally and
the attacker has subverted the protection. This watermarking technique will
always be susceptible to subtractive attacks but using stronger opaque predi-
cates, such as ones that are not commonly known, will make it harder for the
attacker to detect the watermarked sections. In addition, maintaining the se-
crecy of the opaque predicate library will also improve the resiliency against
subtractive attacks.

6.5.2 Additive Attacks

Additive attacks are used by an adversary when he is either unable to locate
the watermarked code or unable to remove the watermarked code. This type
of attack is used to cast doubt on the validity of the original watermark or
to destroy the original all together. Table 5 shows the results from applying
other watermarking algorithms in the SANDMARK system to the test cases
that had been watermarked using GA1, GA2, DGA1, DGA2. We found that

Watermarker embedded using embedded using
GA1 GA2

AddMethodField + +
GA1 - -
GA2 - -
QP + +
BogusExpressions + +
BogusSwitch + +
BogusInitializer + +
ConstantString + +
HatTrick + +
MethodRenamer + +
MondenWmark + +

Table 5: Results from applying other watermarking algorithms to the appli-
cations watermarked using GA1, GA2, DGA1, and DGA2. We found that
for all test cases the results were the same. A ’+’ indicates that the original
watermark was recovered. A ’-’ indicates that the original watermark was
destroyed.

the original watermark is quite resistant to the application of an additional wa-
termark. However, embedding a watermark using the same algorithm or one
of the other GA’s destroyed the original watermark. This occurred because
the recognition procedure detected additional opaque predicates. In addition
we discovered that both watermarks are unrecoverable if we apply GA1 then
GA1, GA2 then GA2, or GA2 then GA1. Even though the original was de-
stroyed, the attacker will not be able to embed his own watermark using one
of these techniques. The same results occur with DGA1 and DGA2 except
that applying DGA2 then DGA1 does not destroy both watermarks.

6.5.3 Distortive Attacks

Distortive attacks are any semantics preserving code transformation, such as
code obfuscation or optimization algorithms. This type of attack is used to
distort a watermark such that it is unrecoverable. The advantage of this attack

over subtractive attacks is that the adversary need not know the exact location
of the watermark. Rather, he can apply the transformation indiscriminately
over the application. Through the application of the code obfuscations found
in SANDMARK we discovered that GA1 is more resilient than GA2. This
discovery contradicts the claim made in [5]. The author claims that GA2 is
stronger since it is difficult to alter the signature of a method. The obfusca-
tions Method 2R Madness, Primitive Promoter, and Promote-
Locals all modify the signatures of the methods in the applications. It is
possible that implementing the overloading technique described in [5] would
improve the resiliency against Primitive Promoter and PromoteLo-
cals. In addition GA2 is susceptible to attacks which merge methods or alter
the body of the methods. The results of applying all obfuscations to the 11
applications are shown in Table 6.

An important assumption made in the study of software watermarking is
that the attacker knows the algorithm used to embed the watermark. Based on
this assumption the GA algorithms can be easily attacked by simply applying
a transformation that inserts an opaque predicate in every boolean expression
throughout the application. This attack will thwart recognition and does not
require knowledge of the secret key or the opaque predicate library used for
embedding. Applying such an attack to the caffeine benchmark yields an
overall slowdown of 97.5%. It is possible to decrease the slowdown by in-
serting the opaque predicate in every other or every few boolean expressions,
however this does not guarantee the watermark will be destroyed.

Through application of the obfuscations we discovered that both the static
and dynamic algorithms demonstrate basically the same resiliency. The re-
sults from testing all four algorithms on TTT and JKeyboard are in Table 7.
Based on these results it is not clear that converting a static watermarking al-
gorithm which is already quite resistant to distortive attacks will improve the
strength of the algorithm. This however does not indicate that truly dynamic
algorithms (those which can only exist in dynamic form) are not inherently
stronger than static algorithms.

6.6 Stealth

Of the evaluation properties stealth is the most subjective. Currently no tech-
nique exists to quantify the meaning of stealth. What we do know is that
when considering the stealth of an application it is best to look at the stealth

Obfuscation embedded using embedded using
GA1 GA2

AddBogusFields 11 11
AppendBogusCode 8 0
BlockMarker 11 8
BogusPredicates 11 0
BoolSplitter 7 11
Buggy Code 11 9
Class Splitter 11 11
ConstantPool Reorderer 3 3
FalseRefactor 11 11
Inliner 11 11
InstructionOrdering 11 11
IntArraySplitter 11 11
InterleaveMethods 11 0
LocalVariable Reorderer 11 11
Method 2R Madness 0 0
Method Merger 11 1
Name Obfuscator 11 11
NodeSplitter 11 11
OpaqueBranch 11 10
ParamReorder 11 11
Primitive Promoter 3 0
PromoteLocals 0 0
Publicizer 11 11
Rename Locals 11 11
SetFieldsPublic 11 11
Signature Bludgeoner 11 11
Static Method Bodies 11 11
Thread Contention 11 11
VarSplitter 11 11
Variable Reassigner 11 11

Table 6: Number of watermarked applications the watermark was recovered
from after the stated obfuscation was applied. The evaluation was performed
on 11 applications.

TTT JKeyboard
Obfuscation GA1 DGA1 GA2 DGA2 GA1 DGA1 GA2 DGA2

Add Bogus Fields + + + + + + + +
Append Bogus Code + + - - + - - -
Block Marker + + + + + + + +
Bogus Predicates + + - + + + - -
Boolean Splitter + + + + + + + +
Buggy Code + + + + + + + +
Class Splitter + + + + + + + +
Constant Pool Reorder - + - + + + + +
Degrade - - - - - - - -
FalseRefactor + + + + + + + +
Inliner + + + + + + + +
Instruction Ordering + + + + + + + +
Int Array Splitter + + + + + + + +
Interleave Methods + + + - + + - -
Local Variable Reorder + + + + + + + +
Method 2R Madness - - - - - - - -
Method Merger + + - - + + + +
Name Obfuscator + + + + + + + +
NodeSplitter + + + + + + + +
OpaqueBranch + + + + + + + +
ParamReorder + + + + + + + +
Primitive Promoter - - - - - - - -
Promote Locals - - - - - - - -
Publicizer + + + + + + + +
Rename Locals + + + + + + + +
SetFieldsPublic + + + + + + + +
Signature Bludgeoner + + + + + + + +
Static Method Bodies + + + + + + + +
Thread Contention + + + + + + + +
Var Splitter + + + + + + + +
Variable Reassigner + + + + + + + +

Table 7: Results from applying obfuscations to GA1, GA2, DGA1, DGA2. A
’+’ indicates the watermark was recovered. A ’-’ indicates the watermark was
destroyed.

Application Methods Conditional Vectors API Methods in Inherited
Statements Calls Scope Methods

TTT 51 54 120 86 418 0
TTT GA1 51 61 120 86 418 0
TTT GA2 58 68 130 93 418 0
JKeyboard 147 147 554 204 2683 15
JKeyboard GA1 147 154 554 204 2683 15
JKeyboard GA2 154 161 561 211 2685 17

Table 8: Static statistics of watermarked and non-watermarked version of TTT
and JKeyboard. The watermark value is “wildcat”.

of the watermarked code within the application (i.e. how does the water-
marked code compare to non-watermarked code within the same application)
and the stealth of the watermarked code with respect to other applications.
These measures of stealth are called local and global stealth respectively.

One technique that can be used to evaluate stealth is to examine how the
static statistics of the application change between non-watermarked and wa-
termarked versions of the application. While this technique does not provide
a quantitative measure it does highlight areas of the watermark application
which might be suspicious to an attacker. Table 8 contains some static statis-
tics of watermarked and non-watermarked versions of TTT and JKeyboard.
What we can see from these statistics is that applications watermarked using
GA1 more closely resemble the original.

7 Summary

Software piracy is an ongoing problem in the software industry. While there
are some legal means to handle the problem they do not always target the
guilty party. Software watermarking is an additional technique that can be
used in the battle. The technique makes proof of authorship or purchase pos-
sible and in some cases the source of the illegal distribution can be identified.

In this paper we provided an implementation and evaluation of two tech-
niques proposed in [5]. In addition, we presented a novel extension of the
technique to study static versus dynamic watermarking algorithms. Through
our analysis we showed that both GA algorithms can be defeated. We also

showed that GA1 is a stronger algorithm than GA2. We based these con-
clusion on six properties. Of these GA1 had a lower overhead, was more
resilient to attack, and demonstrated a higher degree of stealth. With respect
to the remaining three properties the algorithms were equal. We also showed
that the dynamic algorithms are only minimally stronger than the static ver-
sions. From this we conclude that it is not clear that converting a known static
algorithm will improve the strength. However, this does not indicate that the
class of dynamic algorithms is not inherently stronger.

Acknowledgments: This work is supported by the NSF under grant CCR-
0073483, by the AFRL under contract F33615-02-C-1146 and the GAANN
Fellowship.

References

[1] Business software alliance. http://www.bsa.org.

[2] Sandmark. http://www.cs.arizona.edu/sandmark/.

[3] Specjvm98 v1.04. http://www.specbench.org/osg/jvm98/.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 1988.

[5] Geneviève Arboit. A method for watermarking java programs via
opaque predicates. In The Fifth International Conference on Electronic
Commerce Research (ICECR-5), 2002.

[6] Christian Collberg, Ginger Myles, and Andrew Huntwork. Sandmark
- a tool for software protection research. IEEE Security and Privacy,
1(4):40–49, 2003.

[7] Christian Collberg and Clark Thomborson. Software watermarking:
Models and dynamic embeddings. In In Conference Record of POPL
’99: The 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Jan. 1999), 1999. http://citeseer.
nj.nec.com/collberg99software.html.

[8] Christian Collberg, Clark Thomborson, and Douglas Low. Manufac-
turing cheap, resilient, and stealthy opaque constructs. In Principles
of Programming Languages 1998, POPL’98, San Diego, CA, January
1998.

[9] R.L. Davidson and N. Myhrvold. Method and system for generating
and auditing a signature for a computer program. US Patent 5,559,884,
Assignee: Microsoft Corporation, 1996. http://www.delphion.
com/details?pn=US05559884__.

[10] Gael Hachez. A Comparative Study of Software Protection Tools Suited
for E-Commerce with Contributions to Software Watermarking and
Smart Cards. PhD thesis, Universite Catholique de Louvain, 2003.

[11] A. Monden, I. Hajimu, K. Matsumoto, I. Katsuro, and K. Torii. Water-
marking java programs, 1999.

[12] A. Monden, H. Iida, K. Matsumoto, Katsuro Inoue, and Koji Torii. A
practical method for watermarking java programs. In compsac2000,
24th Computer Software and Applications Conference, 2000.

[13] Ginger Myles and Christian Collberg. Software watermarking through
register allocation: Implementation, analysis, and attacks. In
ICISC’2003 (International Conference on Information Security and
Cryptology), 2003.

[14] Jasvir Nagra, Clark Thomborson, and Christian Collberg. A functional
taxonomy for software watermarking. In Michael J. Oudshoorn, editor,
Twenty-Fifth Australasian Computer Science Conference (ACSC2002),
Conferences in Research and Practice in Information Technology, Mel-
bourne, Australia, 2002. ACS.

[15] Jens Palsberg, S. Krishnaswamy, Minseok Kwon, D. Ma, Qiuyun Shao,
and Y. Zhang. Experience with software watermarking. In Proceed-
ings of ACSAC’00, 16th Annual Computer Security Applications Con-
ference, pages 308–316, 2000. http://citeseer.nj.nec.com/
323325.html.

[16] Gang Qu and Miodrag Potkonjak. Hiding signatures in graph coloring
solutions. In Information Hiding, pages 348–367, 1999.

[17] Tapas Ranjan Sahoo and Christian Collberg. Software watermarking in
the frequency domain: Implementation, analysis, and attacks. Techni-
cal Report TR04-07, Department of Computer Science, University of
Arizona, 2004.

[18] Pendragon Software. Caffeinemark 3.0. http://www.
pendragon-software.com/pendragon/cm3/, 1998.

[19] Julien P. Stern, Gael Hachez, Francois Koeune, and Jean-Jacques
Quisquater. Robust object watermarking: Application to code. In In-
formation Hiding, pages 368–378, 1999. http://citeseer.nj.
nec.com/stern00robust.html.

[20] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995.

[21] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. A graph
theoretic approach to software watermarking. In 4th International Infor-
mation Hiding Workshop, Pittsburgh, PA, April 2001.

Ginger Myles is a PhD student at the University of Arizona. She received her BA
in mathematics from Beloit College in Beloit, Wisconsin and her MS in Computer
Science from the University of Arizona. Her research focuses on software protection
and she is particularly interested in watermarking algorithms. Currently, she is
working on the SandMark project.

Christian Collberg is an assistant professor at the University of Arizona, in
Tucson, Arizona. He received his PhD from the University of Lund, Sweden. Prior to
joining the University of Arizona, he was on the faculty at the department of computer
science at the University of Auckland, New Zealand. He is an expert in the study of
software protection, particularly code obfuscation and software watermarking, and is
currently leading the SandMark project.

