
November 21, 2003

Software Watermarking

Ginger Myles

mylesg@cs.arizona.edu

University of Arizona

Department of Computer Science

– p. 1

November 21, 2003

Introduction

In this talk we will discuss...

What software watermarking is

Why we use software watermarking

Techniques used in software watermarking

– p. 2

November 21, 2003

What is Software Watermarking?

A technique used to aid in the prevention of software piracy.

The idea is to embed a message w (the “watermark”) into a
program P , such that w uniquely identifies the owner of P (w
is a copyright notice) or the purchaser of P (w is a
fingerprint).

– p. 3

November 21, 2003

Software Watermarking

A watermarking system consists of two functions:

embed(P, w, key) → P ′

recognize(P ′, key) → w

Watermarked
Program

Original
Program

Embed
Watermark

Extract
Watermark

WW K
K

P P
′

– p. 4

November 21, 2003

Why use software watermarking?

Discourages illegal copying and redistribution.

If we embed a copyright notice software watermarking can be
used to provide proof of ownership.

If we embed a fingerprint it can be used to trace the source of
the illegal redistribution.

Does not prevent illegal copying and redistribution.

– p. 5

November 21, 2003

Categories

Static: the watermark is stored directly in the data or code
sections of a native executable or class file.

Dynamic: the watermark is stored in the run-time structures
of the program.

– p. 6

November 21, 2003

Static Watermarking

Make use of the features of an application that are available
at compile-time.

Java application: constant pool table, method names,
instruction sequence.

Advantages:

There are a variety of locations to embed a watermark.

Fairly simple to modify these features and still maintain
the semantics of the application.

Disadvantage:

Fairly simple to modify these features and still maintain
the semantics of the application.

– p. 7

November 21, 2003

Static Watermarking

Make use of the features of an application that are available
at compile-time.

Java application: constant pool table, method names,
instruction sequence.

Advantages:

There are a variety of locations to embed a watermark.

Fairly simple to modify these features and still maintain
the semantics of the application.

Disadvantage:

Fairly simple to modify these features and still maintain
the semantics of the application.

– p. 7

November 21, 2003

Static Watermarking

Make use of the features of an application that are available
at compile-time.

Java application: constant pool table, method names,
instruction sequence.

Advantages:

There are a variety of locations to embed a watermark.

Fairly simple to modify these features and still maintain
the semantics of the application.

Disadvantage:

Fairly simple to modify these features and still maintain
the semantics of the application.

– p. 7

November 21, 2003

Static Watermarking Example 1

� �

c l a s s C{
method m1 () { . . . }
method m2 () { . . . }

}
� �

⇓
� �

c l a s s C{
method m1#he l () { . . . }
method m2#l o () { . . . }

}
� �

– p. 8

November 21, 2003

Static Watermarking Example 2

� �

char V;
switch e{

case 1 : V = ’G ’
case 2 : V = ’ I ’
case 3 : V = ’N ’
case 4 : V = ’G ’
case 5 : V = ’E ’
case 6 : V = ’R ’

}
� �

– p. 9

November 21, 2003

Static Watermarking Example 3

� �

c l a s s C{
i n t a = 1 ;
void m1 () { . . . }
void m2 () { . . . }

}
� �

⇓
� �

c l a s s C{
i n t a = 1 ;
i n t w i l d c a t # = 5;
void m1 () { . . . }
void m2 () { . . . }

}
� �

– p. 10

November 21, 2003

Dynamic Watermarking

Easter Egg Watermark

Data Structure Watermark

Execution Trace Watermark

– p. 11

November 21, 2003

Easter Egg Watermark

A piece of code that gets activated for a highly unusual input
to the application.

The watermark is generally immediately perceptible by the
user.

Typically the watermark displays a copyright message or an
unexpected image on the screen.

Disadvantages:

They are obvious.

They are easy to locate (using debugging techniques).

Once they have been located they are easy to remove.

– p. 12

November 21, 2003

Easter Egg Watermark

A piece of code that gets activated for a highly unusual input
to the application.

The watermark is generally immediately perceptible by the
user.

Typically the watermark displays a copyright message or an
unexpected image on the screen.

Disadvantages:

They are obvious.

They are easy to locate (using debugging techniques).

Once they have been located they are easy to remove.

– p. 12

November 21, 2003

Easter Egg Example

Adobe Acrobat 4.0

Select Help → About Plug-ins → Acrobat Forms and hold
Ctrl+Alt+Shift while clicking on the credits button

– p. 13

November 21, 2003

Easter Egg Example

Adobe Acrobat 4.0

Select Help → About Plug-ins → Acrobat Forms and hold
Ctrl+Alt+Shift while clicking on the credits button

– p. 13

November 21, 2003

Data Structure Watermark

Embeds the watermark in the state of a program as the
program is executed with a particular input sequence.

e.g. global, heap, and stack data

Far more stealthy than easter egg watermark since no output
is produced.

– p. 14

November 21, 2003

Execution Trace Watermark

Embeds the watermark within the trace of the application as
it is executed with a special input sequence.

Differs from the data structure watermark in that the
watermark is embedded in the application’s instructions or
address instead of the application’s state.

– p. 15

November 21, 2003

Watermark Evaluation Properties

Credibility: The watermark should be readily detectable for
proof of authorship while minimizing the probability of
coincidence.

Data-rate: Maximize the length of message that can be
embedded.

Perceptual Invisibility (Stealth): A watermark should exhibit
the same properties as the code around it so as to make
detection difficult.

Part Protection: A good watermark should be distributed
throughout the software in order to protect all parts of it.

– p. 16

November 21, 2003

Watermark Evaluation Properties

Credibility: The watermark should be readily detectable for
proof of authorship while minimizing the probability of
coincidence.

Data-rate: Maximize the length of message that can be
embedded.

Perceptual Invisibility (Stealth): A watermark should exhibit
the same properties as the code around it so as to make
detection difficult.

Part Protection: A good watermark should be distributed
throughout the software in order to protect all parts of it.

– p. 16

November 21, 2003

Watermark Evaluation Properties

Credibility: The watermark should be readily detectable for
proof of authorship while minimizing the probability of
coincidence.

Data-rate: Maximize the length of message that can be
embedded.

Perceptual Invisibility (Stealth): A watermark should exhibit
the same properties as the code around it so as to make
detection difficult.

Part Protection: A good watermark should be distributed
throughout the software in order to protect all parts of it.

– p. 16

November 21, 2003

Watermark Evaluation Properties

Credibility: The watermark should be readily detectable for
proof of authorship while minimizing the probability of
coincidence.

Data-rate: Maximize the length of message that can be
embedded.

Perceptual Invisibility (Stealth): A watermark should exhibit
the same properties as the code around it so as to make
detection difficult.

Part Protection: A good watermark should be distributed
throughout the software in order to protect all parts of it.

– p. 16

November 21, 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Subtractive Attack: The adversary examines the
(disassembled/de-compiled) program in an attempt to
discover the watermark and to remove all or part of it from
the code.

W

Alice

K

P
′′

Bob

P
′P

K

W W

Alice Bob

T

P P
′

P
′′

P
′′′

K

– p. 17

November 21, 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Subtractive Attack: The adversary examines the
(disassembled/de-compiled) program in an attempt to
discover the watermark and to remove all or part of it from
the code.

W

Alice

K

P
′′

Bob

P
′P

K

W W

Alice Bob

T

P P
′

P
′′

P
′′′

K

– p. 17

November 21, 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Subtractive Attack: The adversary examines the
(disassembled/de-compiled) program in an attempt to
discover the watermark and to remove all or part of it from
the code.

W

Alice

K

P
′′

Bob

P
′P

K

W W

Alice Bob

T

P P
′

P
′′

P
′′′

K

– p. 17

November 21, 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Additive Attack: The adversary adds a new watermark in
order to make it hard for the IP owner to prove that her
watermark is actually the original.

W W1

W1

W
W

Additive
Attack

P
′

P

K

Alice Bob

K1

KP
′′

– p. 18

November 21, 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Distortive Attack: A series of semantics-preserving
transformations are applied to the software in an attempt
to render the watermark useless.

W W’ W’

Distortive
Attack

Bob

K

Alice

P
K

P
′ P

′′

– p. 19

November 21, 2003

Watermark Evaluation Properties

Resilience: A watermark should withstand a variety of attacks

Collusive Attack: The adversary compares two copies of
the software which contain different fingerprints in order to
identify the location.

F1

F2

Collusive
AttackP1

Alice Bob

PP

K1

K2

P2

– p. 20

November 21, 2003

Watermark Evaluation Properties

Credibility

Data-rate

Perceptual Invisibility (Stealth)

Part Protection

Resilience

Subtractive Attack

Additive Attack

Distortive Attack

Collusive Attack

– p. 21

November 21, 2003

Published Algorithms

Monden, et. al.

Davidson and Myhrvold

Qu and Potkonjak

Arboit

– p. 22

November 21, 2003

SandMark

A research tool for studying software protection techniques for
Java bytecode.

software watermarking, code obfuscation, and
tamper-proofing

Includes a variety of tools to study the strength of a
watermarking algorithm.

– p. 23

November 21, 2003

Java Bytecode

Java classes are compiled to class-files which contain the
bytecodes of each method and a symbol table.

� �

void whileI(){

int i = 0;

while(i < 100){

i++;

}

}
� �

0 iconst 0 // push int constant 0

1 istore 1 // store into local variable 1

2 goto 8 // first time no increment

5 iinc 1 1 // add 1 to local variable 1

8 iload 1 // load from local variable 1

9 bipush 100 // push a small int (100)

11 if icmplt 5 // compare, if true goto 5

14 return // return void when done

– p. 24

November 21, 2003

Opaque Predicates

Opaque Predicate: A predicate P is opaque at a program
point p, if at point p the outcome of P is known at
embedding time. If P always evaluates to True we write P T

p ,

for False we write P F
p , and if P sometimes evaluates to

True and sometimes to False we write P ?
p .

Opaque Method: A boolean method M is opaque at an
invocation point p, if at point p the return value of M is
known at embedding time. If M always returns the value of
True we write MT

p , for False we write MF
p , and if M

sometimes returns True and sometimes False we write M ?
p .

Inserted to make it difficult for an adversary to analyze the
control-flow of the application.

– p. 25

November 21, 2003

Opaque Predicates

Opaque Predicate: A predicate P is opaque at a program
point p, if at point p the outcome of P is known at
embedding time. If P always evaluates to True we write P T

p ,

for False we write P F
p , and if P sometimes evaluates to

True and sometimes to False we write P ?
p .

Opaque Method: A boolean method M is opaque at an
invocation point p, if at point p the return value of M is
known at embedding time. If M always returns the value of
True we write MT

p , for False we write MF
p , and if M

sometimes returns True and sometimes False we write M ?
p .

Inserted to make it difficult for an adversary to analyze the
control-flow of the application.

– p. 25

November 21, 2003

Opaque Predicates

Opaque Predicate: A predicate P is opaque at a program
point p, if at point p the outcome of P is known at
embedding time. If P always evaluates to True we write P T

p ,

for False we write P F
p , and if P sometimes evaluates to

True and sometimes to False we write P ?
p .

Opaque Method: A boolean method M is opaque at an
invocation point p, if at point p the return value of M is
known at embedding time. If M always returns the value of
True we write MT

p , for False we write MF
p , and if M

sometimes returns True and sometimes False we write M ?
p .

Inserted to make it difficult for an adversary to analyze the
control-flow of the application.

– p. 25

November 21, 2003

Monden Algorithm

Embeds the watermark in a dummy method that is added to
the application.

The embedding is accomplished through a specially
constructed sequence of instructions.

Since the inserted method is never executed there is flexibility
in how the instructions are constructed.

Can disguise the method by adding a call to the method
which is regulated by an opaque predicate.

– p. 26

November 21, 2003

Monden Algorithm

SandMark implementation

Encode 8 bits of the watermark by replacing the operand
of every BIPUSH instruction.

Encode 3 bits of the watermark by replacing each
arithmetic instruction.

iadd 000

iand 001

ior 010

ixor 011

irem 100

idiv 101

imul 110

isub 111

– p. 27

November 21, 2003

Monden Algorithm

SandMark implementation

Encode 8 bits of the watermark by replacing the operand
of every BIPUSH instruction.

Encode 3 bits of the watermark by replacing each
arithmetic instruction.

iadd 000

iand 001

ior 010

ixor 011

irem 100

idiv 101

imul 110

isub 111

– p. 27

November 21, 2003

DM Algorithm

Embeds the watermark by reordering the basic blocks of the
control flow graph.

Since the functionality of the program must be maintained the
blocks are relinked.

4

3

0

2

1

1

0

2

3

4

55

[1,0,2]

Original CFG Watermarked CFG

Branches
Fall−Throughs

GOTO

– p. 28

November 21, 2003

DM Algorithm

Embeds the watermark by reordering the basic blocks of the
control flow graph.

Since the functionality of the program must be maintained the
blocks are relinked.

4

3

0

2

1

1

0

2

3

4

55

[1,0,2]

Original CFG Watermarked CFG

Branches
Fall−Throughs

GOTO

– p. 28

November 21, 2003

QPS Algorithm

Use the interference graph and the graph coloring problem to
embed a watermark in the register allocation of an application.

– p. 29

November 21, 2003

Interference Graph

Models the relationship between the variables in the procedure.

Each variable in the procedure is represented by a vertex.

If two variables have overlapping live ranges then the vertices
are joined by an edge.

The graph is colored so that we can assign the variables to
registers so that we minimize the number of registers required
and variables that are live at the same time do not share a
register.

– p. 30

November 21, 2003

Interference Graph Example

� �

v1 := 2 * 2

v2 := 2 * 3

v3 := 2 * v2

v4 := v1 + v2

v5 := 3 * v3
� �

 1

 2

 3 4

 5

– p. 31

November 21, 2003

Interference Graph Example

� �

v1 := 2 * 2

v2 := 2 * 3

v3 := 2 * v2

v4 := v1 + v2

v5 := 3 * v3
� �

 1

 2

 3 4

 5

– p. 32

November 21, 2003

Interference Graph Example

� �

v1 := 2 * 2

v2 := 2 * 3

v3 := 2 * v2

v4 := v1 + v2

v5 := 3 * v3
� � 4

 5

 1

 2

 3

– p. 33

November 21, 2003

QPS Algorithm

Edges are added between chosen vertices in the graph based
on the value of the message.

Since the vertices are now connected, they cannot be assigned
to the same register.

– p. 34

November 21, 2003

QPS Embedding Algorithm

for each vertex vi ∈ V which is not already in a triple

if possible find the nearest two vertices vi1
and vi2

such that

vi1
and vi2

are the same color as vi,

and vi1
and vi2

are not already in triple.

if mi = 0

add edge (vi, vi1
)

else

add edge (vi, vi2
)

end for

4 3

2

1

5

4 3

2

1

5

4 3

2

1

5

– p. 35

November 21, 2003

QPS Example

(e) Watermarked Bytecode

50 : iconst_1

53 : iload_2
54 : iconst_1
55 : isub
56 : istore_2
57 : goto −> 12

62 : ireturn

21 : iconst_1

42 : baload
43 : if_icmpeq −> 50
46 : iconst_0
47 : goto −> 51

34 : ifne −> 60

38 : iload_2
37 : aload_0

39 : baload
40 : aload_1
41 : iload_2

22 : ifne −> 33

30 : goto −> 34
33 : iconst_1

13 : iconst_0
14 : if_icmplt −> 21
17 : iconst_0
18 : goto −> 22

METHOD: fast_memcmp:([B[BI)Z
0 : iconst_0
1 : istore 3
3 : iconst_0
4 : istore_3
5 : iconst_1

8 : iload_2
9 : iconst_1
10 : isub
11 : istore_2
12 : iload_2

6 : istore 4

25 : iload 4

60 : iload 4

51 : istore 4

27 : invokestatic

v1

v2

v3

v4v5

v6

v7

(b) Original Interference Graph

v1

v2

v3

v4v5

v6

v7

(c) Watermarked Interference Graph

Watermark
Embed

v7 2
v6 4
v5 3
v4 3
v3 2
v2 1
v1 0

variable register number
(d) Register Assignment Table

(a) Original Bytecode

50 : iconst_1
51 : istore 3
53 : iload_2
54 : iconst_1
55 : isub
56 : istore_2
57 : goto −> 12
60 : iload 3
62 : ireturn

21 : iconst_1

42 : baload
43 : if_icmpeq −> 50
46 : iconst_0
47 : goto −> 51

34 : ifne −> 60

38 : iload_2
37 : aload_0

39 : baload
40 : aload_1
41 : iload_2

22 : ifne −> 33
25 : iload 3

30 : goto −> 34
33 : iconst_1

13 : iconst_0
14 : if_icmplt −> 21
17 : iconst_0
18 : goto −> 22

METHOD: fast_memcmp:([B[BI)Z
0 : iconst_0
1 : istore 3
3 : iconst_0
4 : istore_3
5 : iconst_1
6 : istore 3
8 : iload_2
9 : iconst_1
10 : isub
11 : istore_2
12 : iload_2

27 : invokestatic

– p. 36

November 21, 2003

Arboit Algorithm 1

k branching points throughout the application are randomly
selected.

At each branching point either ∧P T
bi

, ∨¬P T
bi

, or ∨P F
bi

is

appended to the predicate at that location.

The bits of the watermark are embedded through the opaque
predicate that has been chosen.

Within the opaque predicate the bits can be encoded either
as constants or by assigning a rank to each of the opaque
predicates.

– p. 37

November 21, 2003

Sample Opaque Predicates

∀x, y ∈ � 7y2 − 1 6= x2

∀x ∈ � 2|bx2

2
c

∀x ∈ � 2|x(x + 1)

∀x ∈ � x2 ≥ 0

∀x ∈ � 3|x(x + 1)(x + 2)

∀x ∈ � 7 6 |x2 + 1

∀x ∈ � 81 6 |x2 + x + 7

∀x ∈ � 19 6 |4x2 + 4

∀x ∈ � 4|x2(x + 1)(x + 1)

– p. 38

November 21, 2003

Arboit Algorithm 1 Example

� �

c l a s s C{

vo id m1(i n t a , i n t b){

. . .

i f (a <= b) { . . . }

e l s e { . . . }

. . .

}

}
� �

W⇒

� �

c l a s s C{

vo id m1(i n t a , i n t b){

. . .

i n t c=1;

i f ((a <= b) && (c∗c >= 0)){ . . .}

e l s e { . . . }

. . .

}

}
� �

– p. 39

November 21, 2003

Arboit Algorithm 2

k branching points throughout the application are randomly
selected.

At each branching point, MT
bi

or MF
bi

is created and a method

call is appended.

The bits of the watermark are encoded in the opaque method
through the opaque predicate that it evaluates.

– p. 40

November 21, 2003

Arboit Algorithm 2 Example

� �

c l a s s C{

vo id m1(i n t a , i n t b){

. . .

i f (a <= b) { . . . }

e l s e { . . . }

. . .

}

}
� �

W⇒

� �

c l a s s C{

boolean m2(){

i n t c = 1 ;

r e t u r n (c∗c >= 0);

}

vo id m1(i n t a , i n t b){

. . .

i f ((a <= b) && m2 ()) { . . . }

e l s e { . . . }

. . .

}

}
� �

– p. 41

November 21, 2003

Summary

Software watermarking is a technique that can be used to
provide proof of authorship or permit the tracing of illegal
copying.

There are two general categories: static and dynamic.

There are 5 watermark evaluation properties we use to
determine the overall strength of an algorithm.

– p. 42

November 21, 2003

Readings and References

Software Watermarking: Models and Dynamic Embeddings,
Collberg, Thomborson, Principles of Programming Languages
1999, POPL’99,
citeseer.nj.nec.com/collberg99software.html.

A Practical Method for Watermarking Java Programs,
Monden, Iida, Matsumoto, Inoue, Torii, Compsac 2000.

Method and System for Generating and Auditing a Signature
for a Computer Program, Davidson, Myhrvold, US Patent
5,559,884.

Software Watermarking Through Register Allocation:
Implementation, Analysis and Attacks, Myles, Collberg, ICISC
2003.

– p. 43

citeseer.nj.nec.com/collberg99software.html

November 21, 2003

Readings and References

A Method for Watermarking Java Programs via Opaque
Predicates, Arboit, ICECR-5.

A Technique for Discouraging Piracy of Java Applications,
Myles, Collberg, submitted to Financial Cryptography 2004.

Sandmark–A Tool for Software Protection Research Collberg,

Myles, Huntwork, IEEE Security and Privacy,July-August 2003
(Vol. 1, No. 4).

The Easter Egg Archive, www.eeggs.com

– p. 44

www.eeggs.com

	Introduction
	What is Software Watermarking?
	Software Watermarking
	Why use software watermarking?
	Categories
	Static Watermarking
	Static Watermarking
	Static Watermarking

	Static Watermarking Example 1
	Static Watermarking Example 2
	Static Watermarking Example 3
	Dynamic Watermarking
	Easter Egg Watermark
	Easter Egg Watermark

	Easter Egg Example
	Easter Egg Example

	Data Structure Watermark
	Execution Trace Watermark
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties

	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties

	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Watermark Evaluation Properties
	Published Algorithms
	SandMark
	Java Bytecode
	Opaque Predicates
	Opaque Predicates
	Opaque Predicates

	Monden Algorithm
	Monden Algorithm
	Monden Algorithm

	DM Algorithm
	DM Algorithm

	QPS Algorithm
	Interference Graph
	Interference Graph Example
	Interference Graph Example
	Interference Graph Example
	QPS Algorithm
	QPS Embedding Algorithm
	QPS Example
	Arboit Algorithm 1
	Sample Opaque Predicates
	Arboit Algorithm 1 Example
	Arboit Algorithm 2
	Arboit Algorithm 2 Example
	Summary
	Readings and References
	Readings and References

